Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Funct ; 42(1): e3915, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38269513

RESUMO

Three types of adipocytes, white, brown, and beige, regulate the systemic energy balance through the storage and expenditure of chemical energy. In addition, adipocytes produce various bioactive molecules known as adipokines. In contrast to white adipocyte-derived molecules, less information is available on the adipokines produced by brown adipocytes (batokine). This study explored the regulatory expression of interleukin (IL)-6 in cell culture studies. Norepinephrine or a nonselective ß-adrenergic receptor agonist increased the expression of IL-6 in primary brown adipocytes and HB2 brown adipocytes. Treatment with forskolin (Fsk), an activator of the cAMP-dependent protein kinase (PKA) pathway (downstream signaling of the ß-adrenergic receptor), efficiently stimulated IL-6 expression in brown adipocytes and myotubes. Phosphorylated CREB and phosphorylated p38 MAP kinase levels were increased in Fsk-treated brown adipocytes within 5 min. In contrast, a long-term (∼60 min and ∼4 h) treatment with Fsk was required for increase in STAT3 phosphorylation and C/EBPß expression, respectively. The PKA, p38 MAP kinase, STAT3, and C/EBPß pathways are required for the maximal IL-6 expression induced by Fsk, which were verified by use of various inhibitors of these signal pathways. Vitamin C enhanced Fsk-induced IL-6 expression through the extracellular signal-regulated kinase activity. The present study provides basic information on the regulatory expression of IL-6 in activated brown adipocytes.


Assuntos
Adipócitos Marrons , Proteína Quinase 14 Ativada por Mitógeno , Animais , Camundongos , Adipócitos Brancos , Adipocinas , Colforsina/farmacologia , Interleucina-6
2.
J Nutr Biochem ; 122: 109454, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37788722

RESUMO

A metabolomic study was performed on the kidneys and skeletal muscles of rats fed diets containing varying contents of Mg for 4 weeks. The kidneys are divided into two parts, the aerobic cortex and the anaerobic medulla, that differ in metabolism. The relative contents of 3-phosphoglyceric acid, 2-phosphoglyceric acid, and phosphoenolpyruvic acid increased with Mg restriction in both renal regions. In contrast, pyruvic acid content decreased with Mg restriction in the diets, suggesting an inhibitory conversion of phosphoenolpyruvic acid to pyruvic acid. The lactic acid content increased in both regions of the kidneys of Mg-restricted rats, implying changes towards a more glycolytic metabolism, possibly resulting from the impairment of mitochondrial function. There are two types of muscle fibers: glycolytic fast and oxidative slow muscle fibers. The soleus muscle consists of slow muscle fibers, whereas the gastrocnemius muscle consists of a combination of fast and slow muscle fibers. Similar to the changes in the kidneys, the contents of 3-phosphoglyceric acid, 2-phosphoglyceric acid, phosphoenolpyruvic acid, and lactic acid increased in the soleus and gastrocnemius muscles with dietary Mg restriction. Unlike in the kidney, pyruvic acid content increased in the soleus muscle in response to Mg restriction. Severe Mg restriction decreased contents of carnosine and its constituent ß-alanine and increased the levels of purine derivatives such as xanthine and uric acid in the gastrocnemius muscle. The present study suggests a region-dependent sensitivity to dietary restriction of Mg, which may lead to the onset of various metabolic disorders.


Assuntos
Magnésio , Ácido Pirúvico , Ratos , Animais , Magnésio/metabolismo , Ácido Pirúvico/metabolismo , Músculo Esquelético/metabolismo , Rim , Ácido Láctico/metabolismo
3.
FASEB J ; 37(11): e23243, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800888

RESUMO

Hepcidin negatively regulates systemic iron levels by inhibiting iron entry into the circulation. Hepcidin production is increased in response to an increase in systemic iron via the activation of the bone morphogenetic protein (BMP) pathway. Regulation of hepcidin expression by iron status has been proposed on the basis of evidence mainly from rodents and humans. We evaluated the effect of iron administration on plasma hepcidin concentrations in calves and the expression of bovine hepcidin by the BMP pathway in a cell culture study. Hematocrit as well as levels of blood hemoglobin and plasma iron were lower than the reference level in calves aged 1-4 weeks. Although intramuscular administration of iron increased iron-related parameters, plasma hepcidin concentrations were unaffected. Treatment with BMP6 increased hepcidin expression in human liver-derived cells but not in bovine liver-derived cells. A luciferase-based reporter assay revealed that Smad4 was required for hepcidin reporter transcription induced by Smad1. The reporter activity of hepcidin was lower in the cells transfected with bovine Smad4 than in those transfected with murine Smad4. The lower expression levels of bovine Smad4 were responsible for the lower activity of the hepcidin reporter, which might be due to the instability of bovine Smad4 mRNA. In fact, the endogenous Smad4 protein levels were lower in bovine cells than in human and murine cells. Smad4 also confers TGF-ß/activin-mediated signaling. Induction of TGF-ß-responsive genes was also lower after treatment with TGF-ß1 in bovine hepatocytes than in human hepatoma cells. We revealed the unique regulation of bovine hepcidin expression and the characteristic TGF-ß family signaling mediated by bovine Smad4. The present study suggests that knowledge of the regulatory expression of hepcidin as well as TGF-ß family signaling obtained in murine and human cells is not always applicable to bovine cells.


Assuntos
Hepcidinas , Proteína Smad4 , Animais , Bovinos , Humanos , Camundongos , Hepcidinas/genética , Hepcidinas/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Ferro/metabolismo , Transdução de Sinais , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
J Vet Med Sci ; 85(6): 587-591, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37062711

RESUMO

Uncoupling protein 1 (UCP1) is responsible for non-shivering thermogenesis in brown/beige adipocytes in humans and rodents. Previously, we showed unexpected expression of UCP1 in bovine skeletal muscles. Here we evaluated Ucp1 mRNA levels in the muscle tissue of Japanese Black steers. Expression of Ucp1 was higher in 30-month-old cattle than in 26-month-old cattle. Levels of myosin heavy chain (Myh)1, an MYH predominantly expressed in fast-twitch muscles, were also significantly higher in cattle aged 30 months. A similar tendency was observed in the expression of other Myhs that are highly expressed in fast-twitch muscles, Myh2 and Myh4. Ucp1 expression was positively correlated with expression of Myh1, Myh2, and Myh4. Our results indicate the possibility of Ucp1 expression in fast-twitch muscle fibers.


Assuntos
Fibras Musculares de Contração Rápida , Músculo Esquelético , Animais , Bovinos , Adipócitos Marrons , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
5.
Cytokine ; 157: 155936, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35738051

RESUMO

Brown/beige adipocytes, which are derived from skeletal muscle/smooth muscle-lineage cells, consume excess energy as heat through the expression of mitochondrial uncoupling protein 1 (UCP1). Previous studies have shown that forced expression of PR/SET domain (PRDM)-16 or early B-cell factor (EBF)-2 induced UCP1-positive adipocytes in C2C12 myogenic cells. Here, we explored the culture conditions to induce Ucp1 expression in C2C12 cells without introducing exogenous genes. Treatment with rosiglitazone (a peroxisome proliferator-activated receptor (PPAR)-γ agonist), GW501516 (a PPARδ agonist), and bone morphogenetic protein (BMP)-7 for 8 days efficiently increased Ucp1 expression in response to treatment with forskolin, an activator of the protein kinase A pathway. BMP7 dose-dependently increased forskolin-induced Ucp1 expression in the presence of rosiglitazone and GW501516; however, GW501516 was not required for Ucp1 induction. Additionally, the structurally related proteins, BMP6 and BMP9, efficiently increased forskolin-induced Ucp1 expression in rosiglitazone-treated cells. UCP1 protein was localized in cells with lipid droplets, but adipocytes were not always positive for UCP1. Continuous treatment with BMP7 was needed for the efficient induction of Ucp1 by forskolin treatment. Significant expression of Prdm16 was not detected, irrespective of the treatment, and treatment with rosiglitazone, GW501516, and BMP7 did not affect the expression levels of Ebf2. Fibroblast growth factor receptor (Fgfr)-3 expression levels were increased by BMP9 in rosiglitazone-treated cells, and molecules that upregulate Fgfr3 transcription partly overlapped with those that stimulate Ucp1 transcription. The present results provide basic information on the practical differentiation of myogenic cells to brown adipocytes.


Assuntos
Canais Iônicos , Proteínas Mitocondriais , Adipócitos Marrons , Tecido Adiposo Marrom/metabolismo , Colforsina/metabolismo , Colforsina/farmacologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , PPAR gama/metabolismo , Rosiglitazona/farmacologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Biochem Biophys Res Commun ; 612: 57-62, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35504090

RESUMO

Myogenesis is a complex process that is regulated by a variety of factors. We have previously shown that vitamin C and mild endoplasmic reticulum stress synergistically enhance myogenesis. The present study evaluated the effects of vitamin C (ascorbic acid (AsA) and AsA 2-phosphate (AsAp)) and extracellular signal-regulated kinase (ERK) 1/2 pathway on myogenesis. Treatment with U0126, an inhibitor of MEK1/2 that phosphorylates and activates ERK1/2, during the differentiation, increased the mRNA levels of Myod and Myog with an increase in the protein level of myosin heavy chain (MYH)1/2. Treatment with AsA or AsAp alone had minimal effects on myogenesis in C2C12 cells. However, combination treatment with vitamin C and U0126 greatly enhanced myogenesis; the number of thick and long myotubes was increased, and the expression of MYH1/2 was also increased. PD98059, another MEK1/2 inhibitor, also enhanced myogenesis in combination with vitamin C. These results indicate that relief of endogenous ERK1/2 activity enhances vitamin C-mediated myogenesis, suggesting a functional interaction between endogenous ERK1/2 activity and vitamin C. In addition, inhibition of p38 mitogen-activated protein kinase repressed myogenesis in the presence of vitamin C. Thus, vitamin C is a conditional factor that modulates myogenesis.


Assuntos
Desenvolvimento Muscular , Proteínas Quinases p38 Ativadas por Mitógeno , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Biochem Biophys Res Commun ; 568: 83-88, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34198164

RESUMO

Myogenesis is a complex process regulated by several factors. This study evaluated the functional interaction between vitamin C and a high dose of capsaicin (a potential endoplasmic reticulum (ER) stress inducer) on myogenesis. After the induction of differentiation, treatment with ascorbic acid or ascorbic acid phosphate (AsAp) alone had minimal effects on myogenesis in C2C12 cells. However, treatment with capsaicin (300 µM) in undifferentiated C2C12 cells increased the expression levels of genes related to ER stress as well as oxidative stress. Myogenesis was effectively enhanced in C2C12 cells treated with a combination of capsaicin (300 µM) for one day before differentiation stimulation and AsAp for four days post-differentiation; subsequently, thick and long myotubes formed, and the expression levels of myosin heavy chain (MYH) 1/2 and Myh1, Myh4, and Myh7 increased. Considering that mild ER stress stimulates myogenesis, AsAp may elicit myogenesis through the alleviation of oxidative stress-induced negative effects in capsaicin-pretreated cells. The enhanced expression of Myh1 and Myh4 coincided with the expression of Col1a1, a type I collagen, suggesting that the fine-tuning of the myogenic cell microenvironment is responsible for efficient myogenesis. Our results indicate that vitamin C is a potential stimulator of myogenesis in cells, depending on the cell context.


Assuntos
Ácido Ascórbico/farmacologia , Capsaicina/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos
9.
Cell Biochem Funct ; 39(1): 116-125, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33006416

RESUMO

Uncoupling protein 1 (UCP1) is responsible for non-shivering thermogenesis, with restricted expression in brown/beige adipocytes in humans and rodents. We have previously shown an unexpected expression of UCP1 in bovine skeletal muscles. This study evaluated factors affecting Ucp1 gene expression in cultured bovine myogenic cells. Myosatellite cells, which were isolated from the bovine musculus longissimus cervicis, were induced to differentiate into myotubes in the presence of 2% horse serum. Previous studies using murine brown/beige adipocytes revealed that Ucp1 expression levels are directly increased by forskolin and all-trans retinoic acid (RA). The transforming growth factor-ß (TGF-ß)/activin pathway negatively regulated Ucp1 expression, whereas activation of the bone morphogenetic protein (BMP) pathway indirectly increases Ucp1 expression through the stimulation of brown/beige adipogenesis. Neither forskolin nor RA significantly affected Ucp1 mRNA levels in bovine myogenic cells. A-83-01, an inhibitor of the TGF-ß/activin pathway, stimulated myogenesis in these cells. A-83-01 significantly increased the expression of some brown fat signature genes such as Pgc-1α, Cox7a1, and Dio2, with a quantitative but not significant increase in the expression of Ucp1. Treatment with LDN-193189, an inhibitor of the BMP pathway, did not affect the differentiation of bovine myosatellite cells. Rather, LDN-193189 increased Ucp1 mRNA levels without modulating the levels of other brown/beige adipocyte-related genes. The current results indicate that the regulation of Ucp1 expression in bovine myogenic cells is distinct from that in murine brown/beige adipocytes, which has been more intensely characterized. SIGNIFICANCE OF THE STUDY: We previously reported unexpected expression of Ucp1 in bovine muscle tissues; Ucp1 expression has been known to be detected predominantly in brown/beige adipocytes. This study examined regulatory expression of bovine Ucp1 in myogenic cells. Consistent with the changes in expression levels of brown/beige adipocyte-selective genes, Ucp1 expression tended to be increased by inhibition of endogenous TGF-ß activity. In contrast, inhibition of endogenous BMP significantly increased Ucp1 expression without affecting brown/beige adipocyte-selective gene expression. The current results indicate that regulatory expression of Ucp1 in bovine myogenic cells is distinct from that in murine brown/beige adipocytes that is more intensely characterized.


Assuntos
Regulação da Expressão Gênica , Mioblastos Esqueléticos/metabolismo , Fator de Crescimento Transformador beta/biossíntese , Proteína Desacopladora 1/biossíntese , Animais , Bovinos , Células Cultivadas , Mioblastos Esqueléticos/citologia
10.
J Sci Food Agric ; 101(1): 272-278, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32623713

RESUMO

BACKGROUND: Magnesium (Mg) is highly bioavailable in kombu compared with other edible seaweeds. However, a considerable amount of Mg is lost during industrial processing and cooking of kombu. We hypothesized that thinly shaved kombu (TSK), a traditional Japanese kombu product, is a suitable Mg source for daily diets because TSK hardly loses Mg during processing. Rats were fed diets containing TSK or magnesium oxide (MgO) to satisfy 25%, 50%, 75%, or 100% of their Mg requirements. We determined the relative Mg bioavailability of TSK compared to MgO and examined factors affecting Mg bioavailability in TSK. RESULTS: The relative bioavailability of Mg in TSK compared with MgO was calculated as 92.3%, 111.4%, and 87.2% from apparent absorption, urinary excretion, and femoral concentration of Mg, respectively. The ultrafiltrable Mg concentration was lower in the cecal content of rats given TSK than those given MgO. However, the mRNA expression of TRPM6, an Mg channel responsible for Mg absorption, was higher in the cecum of rats given TSK than those given MgO. CONCLUSION: Enhancement of TRPM6 expression in the large intestine negates the low bioaccessibility of Mg in TSK, and thus TSK shows Mg bioavailability comparable with MgO. © 2020 Society of Chemical Industry.


Assuntos
Laminaria/metabolismo , Magnésio/metabolismo , Alga Marinha/metabolismo , Animais , Disponibilidade Biológica , Laminaria/química , Magnésio/análise , Masculino , Minerais/análise , Minerais/metabolismo , Ratos , Ratos Sprague-Dawley , Alga Marinha/química
11.
Sci Rep ; 10(1): 21184, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273573

RESUMO

Iron is essential for a variety of physiological processes. Hepatic iron overload acts as a trigger for the progression of hepatic steatosis to nonalcoholic steatohepatitis and hepatocellular carcinoma. In the present study, we aimed to study the effects of iron overload on cellular responses in hepatocytes. Rat primary hepatocytes (RPH), mouse primary hepatocytes (MPH), HepG2 human hepatoma cells and Hepa1-6 mouse hepatoma cells were treated with FeCl3. Treatment with FeCl3 effectively increased iron accumulation in primary hepatocytes. Expression levels of molecules involved in cellular signaling such as AMPK pathway, TGF-ß family pathway, and MAP kinase pathway were decreased by FeCl3 treatment in RPH. Cell viability in response to FeCl3 treatment was decreased in RPH but not in HepG2 and Hepa1-6 cells. Treatment with FeCl3 also decreased expression level of LC-3B, a marker of autophagy in RPH but not in liver-derived cell lines. Ultrastructural observations revealed that cell death resembling ferroptosis and necrosis was induced upon FeCl3 treatment in RPH. The expression level of genes involved in iron transport varied among different liver-derived cells- iron is thought to be efficiently incorporated as free Fe2+ in primary hepatocytes, whereas transferrin-iron is the main route for iron uptake in HepG2 cells. The present study reveals specific cellular responses in different liver-derived cells as a consequence of iron overload.


Assuntos
Hepatócitos/patologia , Sobrecarga de Ferro/patologia , Adenilato Quinase/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cloretos/farmacologia , Compostos Férricos/farmacologia , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Ontologia Genética , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/ultraestrutura , Humanos , Ferro/farmacologia , Sobrecarga de Ferro/genética , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia/efeitos dos fármacos , Mitofagia/genética , Necrose , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
12.
J Vet Med Sci ; 82(12): 1734-1741, 2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33162463

RESUMO

Previous studies suggest a negative relationship between hepatic oxidative stress and productivity in beef cattle. Uncoupling protein 2 (UCP2) is involved in the disappearance of reactive oxygen species, suggesting the defensive role of UCP2 against oxidative stress. The present study examined the relationship between oxidative stress and expression levels of UCP2/Ucp2 in cultured human and mouse liver-derived cells. We also explored factors regulating bovine Ucp2 transcription. As oxidative stress inducers, hydrogen peroxide, ethanol, and cumene hydroperoxide (CmHP) were used. Expression levels of hemoxygenase 1 (HMOX1), a representative gene induced by oxidative stress, were not affected by any oxidative stress inducers in HepG2 human liver-derived cells. The levels of UCP2 mRNA were also unaffected by the oxidative stress inducers. Treatment with CmHP increased expression of Hmox1 in Hepa1-6 mouse liver-derived cells, but Ucp2 expression was not changed. Stimulus screening for regulator of transcription (SSRT) revealed that expression of p50 or p65, transcription factors conferring response to oxidative stress, did not stimulate bovine Ucp2 transcrition in HepG2 cells. SSRT also showed 11 molecules that induced Ucp2 transcription more than 4-fold; among them, endoplasmic reticulum (ER) stress-related transcription factors such as XBP1, c-JUN, JUNB, and C/EBPß were identified. However, treatment with ER stress inducers did not increase Ucp2 expression in HepG2 and Hepa1-6 cells. The present results suggest that 1) neither oxidative stress nor ER stress induces Ucp2 expression in liver-derived cells, and 2) Ucp2 transcription is stimulated by several transcription factors.


Assuntos
Canais Iônicos , Proteínas Mitocondriais , Animais , Bovinos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2/genética
13.
Biochim Biophys Acta Gen Subj ; 1864(8): 129610, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32251709

RESUMO

BACKGROUND: Expression of hepcidin, a hormone produced by hepatocytes which negatively regulates the circulating iron levels, is known to be positively regulated by BMP6, a member of transforming growth factor (TGF)-ß family. Previous studies have shown that iron status is sensed by sinusoidal endothelial cells of hepatic lamina, leading to the modulation of BMP6 expression. METHODS: ISOS-1, HUVEC, F-2, and SK-HEP1 endothelial cells were treated with either iron or 2,2'-dipyridyl (2DP), a cell-permeable iron-chelator, and expression level of Bmp6 was examined. To identify factors affecting Bmp6 transcription, stimulus screening for regulator of transcription (SSRT) was developed. RESULTS: Treatment with iron slightly increased the expression levels of Bmp6, while 2DP unexpectedly increased Bmp6 expression in a dose-dependent manner. 2DP-induced Bmp6 expression was resistant to co-treatment with iron. 2DP-induced Bmp6 expression was also detected in HUVEC, F-2 cells, and SK-HEP1 cells. Luciferase-based reporter assays indicated that forced expression of JunB increased the transcription of Bmp6. 2DP induced phosphorylation of JunB; co-treatment with SP600125 blocked the 2DP-induced Bmp6 expression partially. JunB-induced Bmp6 transcription was not affected by mutations of putative JunB-responsive elements. Some endoplasmic reticulum stress inducers increased the expression of Bmp6. SSRT revealed pathways regulating Bmp6 transcription positively and negatively. Hepa1-6 liver cells and C2C12 myogenic cells were prone to 2DP induced Bmp6 expression. CONCLUSIONS: The present study reveals non­iron-regulated Bmp6 expression in endothelial cells. GENERAL SIGNIFICANCE: Regulatory expression of Bmp6 may be important as a key step for fine tuning of BMP activity.


Assuntos
2,2'-Dipiridil/farmacologia , Proteína Morfogenética Óssea 6/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Ferro/farmacologia , Camundongos
14.
Phytochemistry ; 169: 112164, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31622858

RESUMO

Previous studies have shown that several d-amino acids are widely present in plants, and serine racemase (SerR), which synthesizes d-serine in vivo, has already been identified from three plant species. However, the full picture of the d-amino acid synthesis pathway in plants is not well understood. To clarify the distribution of amino acid racemases in plants, we have cloned, expressed and characterized eight SerR homologous genes from five plant species, including green alga. These SerR homologs exhibited racemase activity towards serine or aspartate and were identified on the basis of their maximum activity as SerR or aspartate racemase (AspR). The plant AspR gene is identified for the first time from Medicago truncatula, Manihot esculenta, Solanum lycopersicum, Sphagnum girgensohnii and Spirogyra pratensis. In addition to the AspR gene, three SerR genes are identified in the former three species. Phylogenetic tree analysis showed that SerR and AspR are widely distributed in plants and form a serine/aspartate racemase family cluster. The catalytic efficiency (kcat/Km) of plant AspRs was more than 100 times higher than that of plant SerRs, suggesting that d-aspartate, as well as d-serine, can be synthesized in vivo by AspR. The amino acid sequence alignment and comparison of the chromosomal gene arrangement have revealed that plant AspR genes independently evolved from SerR in each ancestral lineage of plant species by gene duplication and acquisition of two serine residues at position 150 to 152.


Assuntos
Isomerases de Aminoácido/metabolismo , Racemases e Epimerases/metabolismo , Isomerases de Aminoácido/genética , Biocatálise , Regulação Enzimológica da Expressão Gênica/genética , Solanum lycopersicum/enzimologia , Manihot/enzimologia , Medicago truncatula/enzimologia , Filogenia , Racemases e Epimerases/genética , Sphagnopsida/enzimologia , Spirogyra/enzimologia
15.
J Vet Med Sci ; 81(11): 1580-1585, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31548472

RESUMO

Vitamin A comprises vitamin A1 and vitamin A2; vitamin A1 is retinol and its fatty-acid esters and vitamin A2 is 3,4-didehydroretinol and its fatty-acid esters. Although vitamin A1 is generally recognized as the major vitamin A, vitamin A2 is found in some birds and mammals that eat fish containing vitamin A2. Plasma concentration of retinyl esters, but not retinol, is known to increase postprandially in humans. The objectives of this study were to confirm the presence of vitamin A2 in fish fed to penguins, and in penguin plasma, and the postprandial changes in vitamin A concentration in penguin plasma. Blood was collected from six male African penguins (Spheniscus demersus) before and after feeding on jack mackerels (Trachurus japonicus) along with a vitamin premix containing vitamin A1. Vitamin A1 concentration in fish was much higher than the requirement, and was 5-fold higher than the vitamin A2 concentration. Vitamin A2 was present in plasma but its concentration was at least 100-fold below that of plasma retinol, suggesting that vitamin A2 is much less bioavailable than vitamin A1 in penguins. Plasma retinol and retinyl palmitate concentrations were found to be stable after the meal. Plasma retinol concentration is suggested to be homeostatically controlled in penguins against the rapid flow of vitamin A1 after meal. The absorbed vitamin A1 is thought to be transported to the liver via the portal vein for storage in penguins, resulting in stable retinyl palmitate concentration in plasma after meal.


Assuntos
Dieta/veterinária , Spheniscidae/sangue , Vitamina A/sangue , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais de Zoológico , Peixes , Vitamina A/análogos & derivados , Vitamina A/química
16.
Mol Biol Rep ; 46(5): 4771-4777, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407244

RESUMO

There are three kinds of adipocytes; white adipocytes accumulate excess energy as fat, whereas brown/beige adipocytes dissipate energy through expression of uncoupling protein 1 (UCP1). Obesity, a feature of excess accumulation of white adipocytes in a body, is one of the risk factors for onset of various diseases in dogs. As the first step to explore adipose genes related to dog obesity, we examined relationships among mRNA levels of putative molecules related to adipogenesis and function of adipocytes in fat of hospitalized dogs. Gonadal adipose tissues were collected from a total of 29 dogs, and the gene expression levels were examined by quantitative RT-PCR analysis. The multicollinearity analysis revealed that body condition score (BCS), which reflects adiposity, did not correlate with expression levels of any genes but correlated with age of dog. Bone morphogenetic protein (BMP) pathway stimulates not only commitment of mesenchymal stem cells to white adipocyte-lineage cells but also brown/beige adipogenesis. Some relationships between expression levels of BMP receptors were significant; especially, expression levels of activin receptor-like kinase (Alk) 3 (a BMP type I receptor) positively related to those of Alk2 (another BMP type I receptor), activin receptor type II (ActRII) A (a type II receptor to transmit BMP signal), ActRIIB (another type II receptor to transmit BMP signal) and BMP receptor type 2 (Bmpr2). PR domain containing 16 (Prdm16) expression levels strongly correlated with expression levels of ActRIIB. Although PRDM16 is known to stimulate brown/beige adipogenesis, expression levels of Ucp1 did not correlate with those of Prdm16. On the other hand, expression levels of Ucp1 correlated with those of Alk6. The present study suggests close relationships among adipose expressions of BMP signal components, and the relationships of expression levels of BMP receptor and those of Prdm16 or Ucp1 in dogs. Further studies using more dogs with various BCS potentially lead to identification of adipose factors to relate with adiposity in dogs.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Expressão Gênica , Animais , Biomarcadores , Células Cultivadas , Cães , Perfilação da Expressão Gênica
17.
Cell Biochem Funct ; 37(5): 377-384, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31215681

RESUMO

Dietary vitamin A status affects energy metabolism. The present study explored the effect of all-trans retinoic acid (ATRA) on the expression levels of molecules and metabolites of brown adipocytes. Chronic ATRA treatment was initiated during the early stage (days 0-8) or late stage (days 8-12) of adipogenesis. Treatment with ATRA during the early and late stage of adipogenesis resulted in an increase in the expression level of Ucp1 and Cidea, genes highly expressed in brown adipocytes, on day 8 and day 12, respectively, whereas expression of Pgc-1α, another gene expressed during brown adipogenesis, was unaffected by ATRA. Non-targeted metabolomic analyses indicated that the pathways related to the glucose metabolism were affected by ATRA, irrespective of the differentiation stage. Cellular levels of glucose 6-phosphate, fructose 6-phosphate, citric acid, and succinic acid decreased after ATRA treatment on days 8 and 12. In contrast, glucose level was higher in ATRA-treated cells on day 8, but it was lower on day 12. ATRA decreased the cellular level of aconitic acid, fumaric acid, and malic acid on day 12 but not on day 8. Furthermore, ATRA increased the expression level of Hxk2 and downregulated the expressions of G6pdh and Pfkl/Pfkp on day 8 but not on day 12. Together, the results indicate that the chronic treatment with ATRA stimulated the formation of activated brown adipocytes, eventually leading to alterations in the levels of cellular metabolites related to glucose metabolism. SIGNIFICANCE OF THE STUDY: Significance of the study treatment with all-trans retinoic acid (ATRA) during the early and late stage of adipogenesis increased the expression of Ucp1 and Cidea, genes highly expressed in brown adipocytes, on day 8 and day 12. Cellular levels of glucose 6-phosphate, fructose 6-phosphate, citric acid, and succinic acid decreased after ATRA treatment on days 8 and 12. In contrast, glucose level was higher in ATRA-treated cells on day 8, but it was lower on day 12. The present results indicate that ATRA stimulated the formation of activated brown adipocytes, eventually leading to alterations in the levels of cellular metabolites related to glucose metabolism.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Diferenciação Celular/efeitos dos fármacos , Metabolômica , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tretinoína/farmacologia , Adipócitos Marrons/citologia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , RNA/genética , Células-Tronco/citologia , Tretinoína/administração & dosagem
18.
Vitam Horm ; 110: 143-156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30798809

RESUMO

Hepcidin expression is determined through transcriptional regulation by systemic iron status. However, acute or chronic inflammation also increases the expression of hepcidin, which is associated with the dysregulation of iron metabolism in pathological conditions. Interleukin (IL)-6 has been suggested to be a principal molecule to confer inflammation-related hepcidin transcription, which is mediated via signal transducer and activator of transcription (STAT)-binding site on the hepcidin promoter. Recently, it has been uncovered that another pro-inflammatory cytokine IL-1ß stimulates hepcidin expression through the distinct mechanism underlying IL-6-mediated hepcidin transcription. In addition to IL-6 induction, IL-1ß stimulates expression of CCAAT-enhancer-binding protein (C/EBP)δ, a transcription factor, leading to transcriptional activation of hepcidin via C/EBP-binding site on the hepcidin promoter. Thus, hepcidin transcription is stimulated through multiple elements in response to proinflammatory cytokines. Relationships between increased production of IL-1ß and dysregulated iron metabolism have been suggested in various diseases, which may be linked to overproduction of hepcidin.


Assuntos
Hepcidinas/metabolismo , Interleucina-1beta/metabolismo , Animais , Regulação da Expressão Gênica , Hepcidinas/genética , Humanos , Inflamação/metabolismo , Interleucina-1beta/genética
19.
J Cell Biochem ; 120(1): 821-835, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30191605

RESUMO

Brown and beige adipocytes dissipate energy as heat. Thus, the activation of brown adipocytes and the emergence of beige adipocytes in white adipose tissue (WAT) are suggested to be useful for preventing and treating obesity. Although ß3 -adrenergic receptor activation is known to stimulate lipolysis and activation of brown and beige adipocytes, fat depot-dependent changes in metabolite concentrations are not fully elucidated. The current study examined the effect of treatment with CL-316,243, a ß3 -adrenergic receptor agonist, on the relative abundance of metabolites in interscapular brown adipose tissue (iBAT), inguinal WAT (ingWAT), and epididymal WAT (epiWAT). Intraperitoneal injection of CL-316,243 (1 mg/kg) for 3 consecutive days increased the relative abundance of several glycolysis-related metabolites in all examined fat depots. The cellular concentrations of metabolites involved in the citric acid cycle and of free amino acids were also increased in epiWAT by CL-316,243. CL-316,243 increased the expression levels of several enzymes and transporters related to glucose metabolism and amino acid catabolism in ingWAT and iBAT but not in epiWAT. CL-316,243 also induced the emergence of more beige adipocytes in ingWAT than in epiWAT. Furthermore, adipocytes surrounded by macrophages were detected in the epiWAT of mice given CL-316,243. The current study reveals the fat depot-dependent modulation of cellular metabolites in CL-316,243-treated mice, presumably resulting from differential regulation of cell metabolism in different cell populations.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Dioxóis/farmacologia , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adipócitos Bege/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/administração & dosagem , Aminoácidos/metabolismo , Animais , Dioxóis/administração & dosagem , Glucose/metabolismo , Injeções Intraperitoneais , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
20.
Artigo em Inglês | MEDLINE | ID: mdl-30308304

RESUMO

Feed intake and body weight are drastically altered in penguins during peri-molting period, and molting is known to affect the nutritional status of vitamin A and E. Although vitamin D status is not known in penguins during peri-molting period, vitamin D intake is supposed to be remarkably altered. The objective of the present study was to clarify the alterations in plasma 25-hydroxyvitamin D (25(OH)D) concentration, the most reliable biomarker for assessing vitamin D status, and vitamin D intake during peri-molting period. Blood samples were collected from seven adult male African penguins (Spheniscus demersus) in the control period, pre-molting period, early-molting period, and late-molting period. The dietary content of vitamin D and calcium (Ca) were higher than that of the estimated requirements. Feed intake increased in the pre-molting period and drastically decreased during the molting periods. Body weight increased in the pre-molting period, followed by the loss of weight towards the end of the experiment. Although vitamin D and Ca intakes decreased during the molting periods, plasma 25(OH)D concentration increased during the molting periods and the increase in plasma Ca concentration was also observed in the late-molting period. These results suggest that the reduction in body fat induced by reducing feed intake stimulated the release of vitamin D from body fat, which increased plasma 25(OH)D and Ca concentrations in molting penguins. Penguins are unlikely to suffer from typical hypervitaminosis D even during molting and vitamin D toxicity is not a realistic problem in penguins because of the short duration of molting.


Assuntos
Muda/fisiologia , Spheniscidae/sangue , Vitamina D/análogos & derivados , Animais , Cálcio/administração & dosagem , Dieta , Masculino , Vitamina D/administração & dosagem , Vitamina D/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...